Structural and developmental principles of neuropil assembly in C. elegans


  • 1.

    Maynard, D. M. Organization of neuropil. Am. Zool. 2, 79–96 (1962).

    Article 

    Google Scholar
     

  • 2.

    Schürmann, F. W. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. Arthropod Struct. Dev. 45, 399–421 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Soiza-Reilly, M. & Commons, K. G. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front. Neural Circuits 8, 105 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743.e22 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Brugnone, N. et al. Coarse graining of data via inhomogeneous diffusion condensation. In 2019 IEEE International Conference on Big Data 2624–2633 (IEEE, 2019).

  • 7.

    Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 103, 2707–2712 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Boyle, T. J., Bao, Z., Murray, J. I., Araya, C. L. & Waterston, R. H. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics 7, 275 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic-cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Azulay, A., Itskovits, E. & Zaslaver, A. The C. elegans connectome consists of homogenous circuits with defined functional roles. PLoS Comput. Biol. 12, e1005021 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 13.

    Chatterjee, N. & Sinha, S. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog. Brain Res. 168, 145–153 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Towlson, E. K., Vertes, P. E., Ahnert, S. E., Schafer, W. R. & Bullmore, E. T. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. Volumetric reconstruction of main Caenorhabditis elegans neuropil at two different time points. Preprint at https://doi.org/10.1101/485771 (2018).

  • 19.

    Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature https://doi.org/10.1038/s41586-021-03284-x (2021).

  • 20.

    Sabrin, K. M., Wei, Y., van den Heuvel, M. P. & Dovrolis, C. The hourglass organization of the Caenorhabditis elegans connectome. PLoS Comput. Biol. 16, e1007526 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Kennerdell, J. R., Fetter, R. D. & Bargmann, C. I. Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans. Development 136, 3801–3810 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Rapti, G., Li, C., Shan, A., Lu, Y. & Shaham, S. Glia initiate brain assembly through noncanonical Chimaerin–Furin axon guidance in C. elegans. Nat. Neurosci. 20, 1350–1360 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Wadsworth, W. G., Bhatt, H. & Hedgecock, E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Yoshimura, S., Murray, J. I., Lu, Y., Waterston, R. H. & Shaham, S. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development 135, 2263–2275 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 25.

    Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008, (2008).

  • 26.

    Dasgupta, A., Hopcroft, J., Kannan, R. & Mitra, P. Spectral clustering by recursive partitioning. Lect. Notes Comput. Sci. 4168, 256–267 (2006).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 27.

    Kaufman, L. & Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, 2005).

  • 28.

    Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Bargmann, C. I. Chemosensation in C. elegans. In WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.123.1 (2006).

  • 30.

    Goodman, M. B. Mechanosensation. In WormBook (ed. The C. elegans Research Community) https://doi.org/10.1895/wormbook.1.62.1 (2006).

  • 31.

    Goodman, M. B. & Sengupta, P. How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics 212, 25–51 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Millard, S. S. & Pecot, M. Y. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev. 13, 11 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Baier, H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu. Rev. Cell Dev. Biol. 29, 385–416 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Ware, R. W., Clark, D., Crossland, K. & Russell, R. L. Nerve ring of nematode Caenorhabditis elegans: sensory input and motor output. J. Comp. Neurol. 162, 71–110 (1975).

    Article 

    Google Scholar
     

  • 37.

    Ward, S., Thomson, N., White, J. G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–337 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. (eds) C. elegans II 2nd edn (Cold Spring Harbor Lab. Press, 1997).

  • 39.

    White, J. Clues to basis of exploratory behaviour of the C. elegans snout from head somatotropy. Phil. Trans. R. Soc. Lond. B 373, (2018).

  • 40.

    Groh, J. M. Making Space: How The Brain Knows Where Things Are (Harvard Univ. Press, 2014).

  • 41.

    Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44, 107–112 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Sasakura, H. & Mori, I. Behavioral plasticity, learning, and memory in C. elegans. Curr. Opin. Neurobiol. 23, 92–99 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 3184–3191 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Lockery, S. R. Neuroscience: A social hub for worms. Nature 458, 1124–1125 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 633–640 (1983).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Wakabayashi, T., Kitagawa, I. & Shingai, R. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neurosci. Res. 50, 103–111 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. (2019).

  • 50.

    Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. (2020).

  • 51.

    Santella, A. et al. WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration. BMC Bioinformatics 16, 189 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Ayala, R., Shu, T. & Tsai, L. H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Chelur, D. S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl Acad. Sci. USA 104, 2283–2288 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Brandes, U. et al. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008).

    Article 

    Google Scholar
     

  • 55.

    Wicks, S. R. & Rankin, C. H. Integration of mechanosensory stimuli in Caenorhabditis elegans. J. Neurosci. 15, 2434–2444 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Walthall, W. W. & Chalfie, M. Cell–cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. Science 239, 643–645 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Kindt, K. S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 10, 568–577 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 58.

    Insley, P. & Shaham, S. Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. PLoS ONE 13, e0194861 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 59.

    Shah, P. K. et al. An in toto approach to dissecting cellular interactions in complex tissues. Dev. Cell 43, 530–540.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 60.

    Lu, N., Yu, X., He, X. & Zhou, Z. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans. Methods Mol. Biol. 559, 357–370 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *