Seasonal origin of the thermal maxima at the Holocene and the last interglacial


  • 1.

    Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 183 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations. Clim. Past Discuss. 2020, 1–35 (2020).


    Google Scholar
     

  • 6.

    Varma, V., Prange, M. & Schulz, M. Transient simulations of the present and the last interglacial climate using the Community Climate System Model version 3: effects of orbital acceleration. Geosci. Model Dev. 9, 3859–3873 (2016).

    ADS 

    Google Scholar
     

  • 7.

    Lu, Z., Liu, Z., Chen, G. & Guan, J. Prominent precession band variance in ENSO intensity over the last 300,000 years. Geophys. Res. Lett. 46, 9786–9795 (2019).

    ADS 

    Google Scholar
     

  • 8.

    Hoffman, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 11.

    Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Rodriguez, L. G. et al. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanogr. Paleoclimatol. 34, 1234–1245 (2019).

    ADS 

    Google Scholar
     

  • 13.

    Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanogr. Paleoclimatol. 29, 680–696 (2014).

    ADS 

    Google Scholar
     

  • 14.

    Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989–1004 (2010).

    ADS 

    Google Scholar
     

  • 15.

    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W. & Seo, K.-H. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci. Adv. 5, eaax8203 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Martin, C. et al. Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France). Quat. Sci. Rev. 228, (2020).

  • 19.

    Longo, W. M. et al. Insolation and greenhouse gases drove Holocene winter and spring warming in Arctic Alaska. Quat. Sci. Rev. 242, 106438 (2020).


    Google Scholar
     

  • 20.

    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A. 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).

    ADS 

    Google Scholar
     

  • 21.

    Huybers, P. & Eisenman, I. (eds) NOAA/NCDC Paleoclimatology Program, http://eisenman.ucsd.edu/code/daily_insolation.m (IGBP PAGES/World Data Center for Paleoclimatology, 2006).

  • 22.

    Berger, A. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    ADS 

    Google Scholar
     

  • 23.

    Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).


    Google Scholar
     

  • 24.

    Be, A. & Hamilton, W. H. Ecology of recent planktonic foraminifera. Micropaleontology 13, 87–106 (1967).


    Google Scholar
     

  • 25.

    De Deckker, P. The Indo-Pacific warm pool: critical to world oceanography and world climate. Geosci. Lett. 3, 20 (2016).

    ADS 

    Google Scholar
     

  • 26.

    Moffa-Sanchez, P., Rosenthal, Y., Babila, T. L., Mohtadi, M. & Zhang, X. Temperature evolution of the Indo-Pacific warm pool over the Holocene and the last deglaciation. Paleoceanogr. Paleoclimatol. 34, 1107–1123 (2019).

    ADS 

    Google Scholar
     

  • 27.

    Ruddiman, W., He, F., Vavrus, S. & Kutzbach, J. The early anthropogenic hypothesis: a review. Quat. Sci. Rev. 240, 106386 (2020).


    Google Scholar
     

  • 28.

    Studer, A. S. et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11, 756–760 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    ADS 

    Google Scholar
     

  • 30.

    Pausata, F. S. R. et al. The greening of the Sahara: past changes and future implications. One Earth 2, 235–250 (2020).


    Google Scholar
     

  • 31.

    Ritchie, J. C., Cwynar, L. C. & Spear, R. W. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305, 126–128 (1983).

    ADS 

    Google Scholar
     

  • 32.

    McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P. & Zander, P. D. The onset and rate of Holocene neoglacial cooling in the Arctic. Geophys. Res. Lett. 45, 12487–12496 (2018).

    ADS 

    Google Scholar
     

  • 33.

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science 194, 1121–1132 (1976).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Milankovitch, M. Kanon Der Erdbestrahlung Und Seine Anwendung Auf Das Eiszeitenproblem (Mihaila Ćurčića, 1941).

  • 35.

    Imbrie, J. et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanogr. Paleoclimatol. 7, 701–738 (1992).

    ADS 

    Google Scholar
     

  • 36.

    Wang, P. X. et al. The global monsoon across time scales: mechanisms and outstanding issues. Earth Sci. Rev. 174, 84–121 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar
     

  • 41.

    Rafter, P. A., Herguera, J.-C. & Southon, J. R. Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core. Clim. Past 14, 1977–1989 (2018).


    Google Scholar
     

  • 42.

    Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. & Sarmiento, J. L. The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean. Glob. Biogeochem. Cycles 29, 307–324 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C 57, 399–418 (2008).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 44.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, https://doi.org/10.1029/2004PA001071 (2005).

  • 45.

    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial‐scale events 64,000–24,000 years ago. Paleoceanogr. Paleoclimatol. 15, 565–569 (2000).

    ADS 

    Google Scholar
     

  • 46.

    Rosenthal, Y., Boyle, E. A. & Slowey, N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 61, (1997).

  • 47.

    Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248–3253 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Rosenthal, Y., Holbourn, A. E., Kulhanek, D. K. & Expedition 363 Scientists. Western Pacific Warm Pool. In Proc. IODP Vol. 363, https://doi.org/10.14379/iodp.proc.363.2018 (International Ocean Discovery Program, 2018).

  • 49.

    Minoshima, K., Kawahata, H. & Ikehara, K. Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 430–447 (2007).


    Google Scholar
     

  • 50.

    Bard, E. et al. Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328, 791–794 (1987).

    ADS 

    Google Scholar
     

  • 51.

    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 1321–1324 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S. & Sinninghe Damsté, J. S. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: a dual-organic proxy (UK′37 and LDI) approach. Paleoceanogr. Paleoclimatol. 29, 87–98 (2014).

    ADS 

    Google Scholar
     

  • 54.

    Cacho, I. et al. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanogr. Paleoclimatol. 14, 698–705 (1999).

    ADS 

    Google Scholar
     

  • 55.

    Isono, D. et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology 37, 591–594 (2009).

    ADS 

    Google Scholar
     

  • 56.

    Yamamoto, M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. Quat. Sci. Rev. 26, 405–414 (2007).

    ADS 

    Google Scholar
     

  • 57.

    Herbert, T. D. et al. Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, 71–76 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R. & Lourens, L. J. Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events. Nat. Geosci. 1, 601–605 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Schmidt, M. W., Weinlein, W. A., Marcantonio, F. & Lynch-Stieglitz, J. Solar forcing of Florida Straits surface salinity during the early Holocene. Paleoceanogr. Paleoclimatol. 27, https://doi.org/10.1029/2012PA002284 (2012).

  • 60.

    Zhao, M., Beveridge, N. A. S., Shackleton, N. J., Sarnthein, M. & Eglinton, G. Molecular stratigraphy of cores off northwest Africa: sea surface temperature history over the last 80 Ka. Paleoceanogr. Paleoclimatol. 10, 661–675 (1995).

    ADS 

    Google Scholar
     

  • 61.

    Schmidt, M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160–163 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Schmidt, M. W. et al. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proc. Natl Acad. Sci. USA 109, 14348–14352 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Lea, D. W., Pak, D. K., Peterson, L. C. & Hughen, K. A. Synchroneity of tropical and high-latitude Atlantic tmperatures over the Last Glacial Termination. Science 301, 1361–1364 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    de Garidel-Thoron, T., Beaufort, L., Linsley, B. K. & Dannenmann, S. Millennial-scale dynamics of the east Asian winter monsoon during the last 200,000 years. Paleoceanogr. Paleoclimatol. 16, 491–502 (2001).

    ADS 

    Google Scholar
     

  • 65.

    Rosenthal, Y., Oppo, D. W. & Linsley, B. K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophys. Res. Lett. 30, https://doi.org/10.1029/2002GL016612 (2003).

  • 66.

    Zhao, M., Huang, C.-Y., Wang, C.-C. & Wei, G. A millennial-scale U37K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 39–55 (2006).


    Google Scholar
     

  • 67.

    Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M. & Wang, L. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanogr. Paleoclimatol. 14, 224–231 (1999).

    ADS 

    Google Scholar
     

  • 68.

    Benway, H. M., Mix, A. C., Haley, B. A. & Klinkhammer, G. P. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr. Paleoceanogr. Paleoclimatol. 21, https://doi.org/10.1029/2005PA001208 (2006).

  • 69.

    Dubois, N., Kienast, M., Normandeau, C. & Herbert, T. D. Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. Paleoceanogr. Paleoclimatol. 24, https://doi.org/10.1029/2009PA001781 (2009).

  • 70.

    Bolliet, T. et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool. Paleoceanogr. Paleoclimatol. 26, https://doi.org/10.1029/2010PA001966 (2011).

  • 71.

    Kienast, M., Steinke, S., Stattegger, K. & Calvert, S. E. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291, 2132–2134 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Fan, W. et al. Variability of the Indonesian throughflow in the Makassar Strait over the last 30 ka. Sci. Rep. 8, 5678 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 years of west African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Weldeab, S., Schneider, R. R., Kölling, M. & Wefer, G. Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33, 981–984 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 75.

    Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1724 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Lea, D. W. et al. Paleoclimate history of Galápagos surface waters over the last 135,000yr. Quat. Sci. Rev. 25, 1152–1167 (2006).

    ADS 

    Google Scholar
     

  • 77.

    Pena, L. D., Cacho, I., Ferretti, P. & Hall, M. A. El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections. Paleoceanogr. Paleoclimatol. 23, https://doi.org/10.1029/2008PA001620 (2008).

  • 78.

    Schröder, J. F., Holbourn, A., Kuhnt, W. & Küssner, K. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr. Quat. Sci. Rev. 154, 143–156 (2016).

    ADS 

    Google Scholar
     

  • 79.

    Linsley, B. K., Rosenthal, Y. & Oppo, D. W. Holocene evolution of the Indonesian throughflow and the western Pacific Warm Pool. Nat. Geosci. 3, 578–583 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 80.

    Bova, S. C. et al. Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation. Paleoceanogr. Paleoclimatol. 30, 1407–1424 (2015).

    ADS 

    Google Scholar
     

  • 81.

    Arz, H. W., Pätzold, J. & Wefer, G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quat. Res. 50, 157–166 (1998).

    CAS 

    Google Scholar
     

  • 82.

    Weldeab, S., Schneider, R. R. & Kölling, M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth Planet. Sci. Lett. 241, 699–706 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    Visser, K., Thunell, R. & Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152–155 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Lückge, A. et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300,000 years. Paleoceanogr. Paleoclimatol. 24, https://doi.org/10.1029/2008PA001627 (2009).

  • 85.

    Gibbons, F. T. et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian oceans. Earth Planet. Sci. Lett. 387, 240–251 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 86.

    Xu, J., Holbourn, A., Kuhnt, W., Jian, Z. & Kawamura, H. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth Planet. Sci. Lett. 273, 152–162 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Lawrence, K. T. & Herbert, T. D. Late Quaternary sea-surface temperatures in the western Coral Sea: implications for the growth of the Australian Great Barrier Reef. Geology 33, 677–680 (2005).

    ADS 

    Google Scholar
     

  • 88.

    Lopes dos Santos, R. A. et al. Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia. Nat. Geosci. 6, 627–631 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 89.

    Lopes dos Santos, R. A. et al. Comparison of organic (U37, TEXH86, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia. Paleoceanogr. Paleoclimatol. 28, 377–387 (2013).

    ADS 

    Google Scholar
     

  • 90.

    Pahnke, K. & Sachs, J. P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. Paleoceanogr. Paleoclimatol. 21, https://doi.org/10.1029/2005PA001191 (2006).

  • 91.

    Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanogr. Paleoclimatol. 18, https://doi.org/10.1029/2002PA000846 (2003).

  • 92.

    Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34, 2005–2030 (2019).

    ADS 

    Google Scholar
     

  • 93.

    Gray, W. R. & Evans, D. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).

    ADS 

    Google Scholar
     

  • 94.

    Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 95.

    Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    ADS 

    Google Scholar
     

  • 96.

    Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 14, 853–871 (2001).

    ADS 

    Google Scholar
     

  • 97.

    Yeager, S. G., Shields, C. A., Large, W. G. & Hack, J. J. The low-resolution CCSM3. J. Clim. 19, 2545–2566 (2006).

    ADS 

    Google Scholar
     

  • 98.

    Timmermann, A., Lorenz, S. J., An, S.-I., Clement, A. & Xie, S.-P. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Clim. 20, 4147–4159 (2007).

    ADS 

    Google Scholar
     

  • 99.

    Delcroix, T. et al. Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck seas. J. Geophys. Res. Oceans 119, 2642–2657 (2014).

    ADS 

    Google Scholar
     

  • 100.

    Palmer, M. R. & Pearson, P. N. A. 23,000-year record of surface water pH and pCO2 in the western equatorial Pacific Ocean. Science 300, 480–482 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Sikes, E. L., O’Leary, T., Nodder, S. D. & Volkman, J. K. Alkenone temperature records and biomarker flux at the subtropical front on the Chatham Rise, SW Pacific Ocean. Deep Sea Res. Part I 52, 721–748 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 102.

    King, A. L. & Howard, W. Planktonic foraminiferal δ13C records from Southern Ocean sediment traps: new estimates of the oceanic Suess Effect. Glob. Biogeochem. Cycles 18, GB2007 (2004).

    ADS 

    Google Scholar
     

  • 103.

    Park, E. M. Variations In GDGT Flux And TEX Thermometry In Three Distinct Oceanic Regimes Of The Atlantic Ocean: A Sediment Trap Study. https://epic.awi.de/id/eprint/51148/1/EPark_PhDThesis_2019.pdf PhD thesis, University of Bremen (2019).

  • 104.

    Amante, C. & Eakins, B. W. ETOPO1 Global Relief Model Converted To PanMap Layer Format. https://doi.org/10.1594/PANGAEA.769615 (NOAA-National Geophysical Data Center, PANGAEA, 2009).

  • 105.

    Emile-Geay, J., McKay, N. P., Wang, J. & Anchukaitis, K. J. CommonClimate/PAGES2k_phase2 code: first public release https://doi.org/10.5281/zenodo.545815 (2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *