Isospin Pomeranchuk effect in twisted bilayer graphene


  • 1.

    Pomeranchuk, I. On the theory of liquid 3-He. Zh. Eksp. Teor. Fiz 20, 919–926 (1950).

    CAS 

    Google Scholar
     

  • 2.

    Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020); correction https://doi.org/10.1038/s41563-020-00917-w (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Wu, F. & Sarma, S. D. Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene. Phys. Rev. Lett. 124, 046403 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Preprint at https://arxiv.org/abs/2004.00638 (2020).

  • 6.

    Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    He, M. et al. Tunable correlation-driven symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Preprint at https://arxiv.org/abs/2006.08053 (2020).

  • 19.

    Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X. Q. & Wang, C. Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Martin, I. Moiré superconductivity. Ann. Phys. 417, 168118 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic-angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. https://doi.org/s41567-020-01129-4 (2021).

  • 25.

    Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Xie, M. & MacDonald, A. H. Weak-field Hall resistivity and spin/valley flavor-symmetry breaking in MAtBG. Preprint at https://arxiv.org/abs/2010.07928 (2020).

  • 27.

    Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators and topological flat-bands in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2007.03735 (2020).

  • 28.

    Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Preprint at https://arxiv.org/abs/2003.11072 (2020).

  • 30.

    Lee, K. et al. Chemical potential and quantum Hall ferromagnetism in bilayer graphene. Science 345, 58–61 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Yang, F. et al. Experimental determination of the energy per particle in partially filled Landau levels. Preprint at https://arxiv.org/abs/2008.05466 (2020).

  • 32.

    Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature https://www.nature.com/articles/10.1038/s41586-021-03366-w (2021).

  • 33.

    Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).

    CAS 

    Google Scholar
     

  • 34.

    Khalaf, E., Bultinck, N., Vishwanath, A. & Zaletel, M. P. Soft modes in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2009.14827 (2020).

  • 35.

    Kumar, A., Xie, M. & MacDonald, A. H. Lattice collective modes from a continuum model of magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2010.05946 (2020).

  • 36.

    Bernevig, B. et al. TBG V. Exact analytic many-body excitations in twisted bilayer graphene Coulomb Hamiltonians: charge gap, Goldstone modes and absence of Cooper pairing. Preprint at https://arxiv.org/abs/2009.14200 (2020).

  • 37.

    Vafek, O. & Kang, J. Renormalization group study of hidden symmetry in twisted bilayer graphene with Coulomb interactions. Phys. Rev. Lett. 125, 257602 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *