Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere


  • 1.

    Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Deming, D., Brown, T. M., Charbonneau, D., Harrington, J. & Richardson, L. J. A new search for carbon monoxide absorption in the transmission spectrum of the extrasolar planet HD 209458b. Astrophys. J. 622, 1149–1159 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).

    ADS 

    Google Scholar
     

  • 4.

    Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Madhusudhan, N. C/O ratio as a dimension for characterising exoplanetary atmospheres. Astrophys. J. 758, 36 (2012).

    ADS 

    Google Scholar
     

  • 7.

    Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    ADS 

    Google Scholar
     

  • 8.

    Hawker, G. A., Madhusudhan, N., Cabot, S. H. C. & Gandhi, S. Evidence for multiple molecular species in the hot Jupiter HD 209458b. Astrophys. J. Lett. 863, L11 (2018).

    ADS 

    Google Scholar
     

  • 9.

    MacDonald, R. J. & Madhusudhan, N. HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Pinhas, A., Madhusudhan, N., Gandhi, S. & MacDonald, R. J. H2O abundances and cloud properties in ten hot giant exoplanets. Mon. Not. R. Astron. Soc. 482, 1485–1498 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Booth, R. A., Clarke, C. J., Madhusudhan, N. & Ilee, J. D. Chemical enrichment of giant planets and discs due to pebble drift. Mon. Not. R. Astron. Soc. 469, 3994–4011 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014).

    ADS 

    Google Scholar
     

  • 13.

    Öberg, K. I. & Bergin, E. A. Excess C/O and C/H in outer protoplanetary disk gas. Astrophys. J. Lett. 831, L19 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Claudi, R. et al. [email protected]: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy. Eur. Phys. J. Plus 132, 364 (2017).


    Google Scholar
     

  • 15.

    Oliva, E. et al. The GIANO spectrometer: towards its first light at the TNG. Soc. Phot. Instrum. Eng. 8446, 84463T (2012).


    Google Scholar
     

  • 16.

    Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Rainer, M. et al. Introducing GOFIO: a DRS for the GIANO-B near-infrared spectrograph. Proc. SPIE 10702, 1070266 (2018).


    Google Scholar
     

  • 18.

    Welch, B. L. The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947).

    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 19.

    Welbanks, L. & Madhusudhan, N. On degeneracies in retrievals of exoplanetary transmission spectra. Astron. J. 157, 206 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Barstow, J. K. Unveiling cloudy exoplanets: the influence of cloud model choices on retrieval solutions. Mon. Not. R. Astron. Soc. 497, 4183–4195 (2020).

    ADS 

    Google Scholar
     

  • 21.

    Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).

    ADS 

    Google Scholar
     

  • 22.

    Moses, J. I. Chemical kinetics on extrasolar planets. Phil. Trans. R. Soc. A 372, 20130073 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 23.

    Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Gandhi, S., Brogi, M. & Webb, R. K. Seeing above the clouds with high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 498, 194–204 (2020).

    ADS 

    Google Scholar
     

  • 25.

    Hood, C. E. et al. Prospects for characterizing the haziest sub-Neptune exoplanets with high-resolution spectroscopy. Astrophys. J. 160, 198 (2020).

    CAS 

    Google Scholar
     

  • 26.

    Venot, O. et al. Global chemistry and thermal structure models for the hot Jupiter WASP-43b and predictions for JWST. Astrophys. J. 890, 176 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Mordasini, C., van Boekel, R., Mollière, P., Henning, T. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS 

    Google Scholar
     

  • 30.

    Tinetti, G. et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).

    ADS 

    Google Scholar
     

  • 31.

    Covino, E. et al. The GAPS programme with HARPS-N at TNG. I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1. Astron. Astrophys. 554, A28 (2013).


    Google Scholar
     

  • 32.

    Brogi, M. et al. Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189 733 b. Astron. Astrophys. 615, A16 (2018).


    Google Scholar
     

  • 33.

    Guilluy, G. et al. Exoplanet atmospheres with GIANO. II. Detection of molecular absorption in the dayside spectrum of HD 102195b. Astron. Astrophys. 625, A107 (2019).

    CAS 

    Google Scholar
     

  • 34.

    Harutyunyan, A. et al. GIANO-B online data reduction software at the TNG. Proc. SPIE 10706, 1070642 (2018).


    Google Scholar
     

  • 35.

    Noll, S. et al. An atmospheric radiation model for Cerro Paranal. Astron. Astrophys. 543, A92 (2012).


    Google Scholar
     

  • 36.

    de Kok, R. J. et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. 554, A82 (2013).


    Google Scholar
     

  • 37.

    Damiano, M. et al. A principal component analysis-based method to analyze high-resolution spectroscopic data on exoplanets. Astrophys. J. 878, 153 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Piskorz, D. et al. Evidence for the direct detection of the thermal spectrum of the non-transiting hot gas giant HD 88133 b. Astrophys. J. 832, 131 (2016).

    ADS 

    Google Scholar
     

  • 39.

    Piskorz, D. et al. Detection of water vapor in the thermal spectrum of the non-transiting hot Jupiter Upsilon Andromedae b. Astron. J. 154, 78 (2017).

    ADS 

    Google Scholar
     

  • 40.

    Foreman-Mackey, D. et al. A systematic search for transiting planets in the K2 data. Astrophys. J. 806, 215 (2015).

    ADS 

    Google Scholar
     

  • 41.

    Gandhi, S. & Madhusudhan, N. GENESIS: new self-consistent models of exoplanetary spectra. Mon. Not. R. Astron. Soc. 472, 2334–2355 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Pinhas, A., Rackham, B. V., Madhusudhan, N. & Apai, D. Retrieval of planetary and stellar properties in transmission spectroscopy with AURA. Mon. Not. R. Astron. Soc. 480, 5314–5331 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Polyansky, O. L. et al. ExoMol molecular line lists—XXX. A complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Coles, P. A. et al. ExoMol molecular line lists—XXXV. A rotation–vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Barber, R. J. et al. ExoMol line lists—III. An improved hot rotation–vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 437, 1828–1835 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Chubb, K. L. et al. ExoMol molecular line lists—XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 493, 1531–1545 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X1Σ+ ground electronic state. Astrophys. J. Suppl. Ser. 216, 15 (2015).

    ADS 

    Google Scholar
     

  • 50.

    Huang, X. et al. Ames-2016 line lists for 13 isotopologues of CO2: updates, consistency, and remaining issues. J. Quant. Spectros. Radiat. Transfer 203, 224−241 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Richard, C. et al. New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transf. 113, 1276–1285 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Barstow, J. K., Aigrain, S., Irwin, P. G. J. & Sing, D. K. A consistent retrieval analysis of 10 hot Jupiters observed in transmission. Astrophys. J. 834, 50 (2017).

    ADS 

    Google Scholar
     

  • 53.

    Cubillos, P. E. et al. Near-ultraviolet transmission spectroscopy of HD 209458b: evidence of ionized iron beyond the planetary Roche lobe. Astron. J. 159, 111 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).

    ADS 

    Google Scholar
     

  • 55.

    Webb, R. K. et al. A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L band. Mon. Not. R. Astron. Soc. 494, 108–119 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Kilpatrick, B. et al. Community targets of JWST’s Early Release Science Program: evaluation of WASP-63b. Astron. J. 156, 103 (2018).

    ADS 

    Google Scholar
     

  • 57.

    Malik, M. et al. HELIOS: an open-source, GPU-accelerated radiative transfer code for self-consistent exoplanetary atmospheres. Astron. J. 153, 56 (2017).

    ADS 

    Google Scholar
     

  • 58.

    Blecic, J., Harrington, J. & Bowman, M. O. TEA: a code calculating thermochemical equilibrium abundances. Astrophys. J. Suppl. Ser. 225, 4 (2016).

    ADS 

    Google Scholar
     

  • 59.

    Yurchenko, S. N. & Tennyson, J. ExoMol line lists—IV. The rotation–vibration spectrum of methane up to 1500 K. Mon. Not. R. Astron. Soc. 440, 1649–1661 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Burrows, A., Marley, M. S. & Sharp, C. M. The near-infrared and optical spectra of methane dwarfs and brown dwarfs. Astrophys. J. 531, 438–446 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Kurucz, R. L. Atlas: a Computer Program for Calculating Model Stellar Atmospheres. SAO Special Report 309 (Smithsonian Astrophysical Observatory, 1970).

  • 62.

    Borysow, J., Frommhold, L. & Birnbaum, G. Collision-induced rototranslational absorption spectra of H2–He pairs at temperatures from 40 to 3000 K. Astrophys. J. 326, 509–515 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Borysow, A., Frommhold, L. & Moraldi, M. Collision-induced infrared spectra of H2–He pairs involving 01 vibrational transitions and temperatures from 18 to 7000 K. Astrophys. J. 336, 495–503 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Borysow, A. & Frommhold, L. Collision-induced infrared spectra of H2–He pairs at temperatures from 18 to 7000 K. II. Overtone and hot bands. Astrophys. J. 341, 549–555 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Borysow, A., Jorgensen, U. G. & Fu, Y. High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Borysow, A. Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K. Astron. Astrophys. 390, 779–782 (2002).

    ADS 

    Google Scholar
     

  • 67.

    Cubillos, P. E. An algorithm to compress line-transition data for radiative-transfer calculations. Astrophys. J. 850, 32 (2017).

    ADS 

    Google Scholar
     

  • 68.

    Bonomo, A. S. et al. The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets. Astron. Astrophys. 602, A107 (2017).


    Google Scholar
     

  • 69.

    Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

    MATH 

    Google Scholar
     

  • 70.

    Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS 

    Google Scholar
     

  • 71.

    Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).

    ADS 

    Google Scholar
     

  • 72.

    Madhusudhan, N., Bitsch, B., Johansen, A. & Eriksson, L. Atmospheric signatures of giant exoplanet formation by pebble accretion. Mon. Not. R. Astron. Soc. 469, 4102–4115 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 73.

    Torres, G., Winn, J. N. & Holman, M. J. Improved parameters for extrasolar transiting planets. Astrophys. J. 677, 1324–1342 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M. & Gilliland, R. L. Using stellar limb-darkening to refine the properties of HD 209458b. Astrophys. J. 655, 564–575 (2007).

    ADS 

    Google Scholar
     

  • 75.

    Albrecht, S. et al. Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012).

    ADS 

    Google Scholar
     

  • 76.

    Evans, T. M. et al. A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models. Mon. Not. R. Astron. Soc. 451, 680–694 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 77.

    Naef, D. et al. The ELODIE survey for northern extra-solar planets. III. Three planetary candidates detected with ELODIE. Astron. Astrophys. 414, 351–359 (2004).

    ADS 

    Google Scholar
     

  • 78.

    Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 79.

    Lyulin, O. M. & Perevalov, V. I. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 201, 94–103 (2017).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *